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ABSTRACT

We present a study of the interaction of small amplitude, unsteady, freestream distur-
bances with a shock wave induced by a wedge in supersonic flow. These disturbances may
be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three).
Their interactions then generate behind the shock disturbances of all three classes, an aspect
that is investigated in some detail, our motivation here being to investigate possible mech-

anisms for boundary-layer receptivity, caused through the amplification and modification of
freestream turbulence through the shock-body coupling. Also, the possibility of enhanced
mixing owing to additional vorticity produced by the shock-body coupling is investigated.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NAS1-19480 and NASI-18605 while the authors were in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-
0001.
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1. Introdaction.

Boundary-layer receptivity (i.e the growth of instabilities within the boundary layer,

triggered by some form of external disturbances) has been observed in supersonic wind tun-

nel experiments in the presence of sound waves radiated by turbulent tunnel-wall boundary

layers or by freestream turbulence. In such situations, the acoustic wave mainstream dis-

turbances are first processed by the shock wave induced by the body in supersonic stream,

and then interact with the boundary layer to cause instability (if at all). In this paper,

we study the former phase of how a shock in the presence of the body processes main-

stream disturbances. The latter phase of these disturbances internalizing in the boundary

layer will be subject of future study. The shock-body combination is shown to produce

a wide spectrum of wavelengths from monochromatic waves, i.e a freestream disturbance

with a single wavelength; in particular, we note the production of shorter wavelength

disturbances than would be expected from the free shock-disturbance interaction. Then

these shorter wavelength perturbations resulting from the shock-body combination would

go on to interact with the boundary layer on the surface of the body, leading to possible

instability. In the case of turbulence-shock-body interaction, it is noted that the turbu-

lence itself is composed of a continuous spectrum of wavelengths and the interaction would

produce even more short-wavelength disturbances than the single wavelength disturbance

considered here. Such interactions could possibly enhance mixing of a multi-component

flow owing to the amplification and generation of vorticity behind the shock. Again, it

is found that the shock-body combination efficiently processes the freestream disturbance

and generates a vorticity profile behind the shock which are larger than those arising from

the interaction of the free shock with mainstream disturbances.

To investigate these phenomena, we consider the model problem of a wedge in a

uniform supersonic stream. In the presence of the wedge, the supersonic flow abruptly

changes direckion through an oblique shock wave, details of which are determined by the

Rankine-Hugoniot conditions. This paper is concerned with the response of the overall

flow field to general, small amplitude disturbances in the freestream that are convected
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through the shock wave. In order to quantify this response, we consider isolated single

wavelength disturbances of acoustic type. vorticity type or entropy type. In particular.

we are concerned with the production of a continuous spectrum of wavelengths produced

in the flow behind the shock in the presence of the wedge. Moore (1954), Ribner (1953)

and McKenzie and Westphal (1968) have investigated the processing of single wavelength

disturbances by freely propagating shocks, and note that through the interaction of the

shock and the freestream disturbance, single wavelength entropy, acoustic and vorticity

disturbances are all generally produced behind the shock in response to an isolated acoustic

disturbance, or to an isolated entropy disturbance or to an isolated vorticity disturbance.

With the presence of the wedge, the flow behind the shock is no longer comprised of single

wavelength acoustic, entropy and vorticity disturbances. In order to satisfy the condition

of zero normal velocity at the wedge surface as well as the condition that the shock remain

attached to the apex of the wedge, a continuous spectrum of wavelengths for the acoustic,

entropy and vorticity disturbances exists behind the shock. It is this more complicated

disturbance pattern that goes on to interact with the boundary layer developing along the

surface of the wedge, possibly initiating new receptivity mechanisms.

Limited work appears to have been done on the theoretical/computational approach

to the interaction between shock waves and boundary-layer instabilities, although most

of this work has focused on the wedge problem. A fairly restrictive (and somewhat ad

hoc) model was presented by Petrov (1984), using inviscid linear stability equations, and

somewhat heuristic conditions on the shock (which was also assumed to lie at the edge of

the boundary layer). Cowley and Hall (1988) presented an asymptotic model, applicable

to three-dimensional viscous modes of instability, with appropriately simplified conditions

applied on the shock surface (derived from the Rankine-Hugoniot conditions), which was

taken to lie just outside of the boundary layer. Chang, Malik and Hussaini (1990) con-

sidered the viscous small disturbance equations with parallel mean flow assumption, using

the full inviscid Rankine-Hugoniot conditions on the shock.

Here we take the equations governing the gas flow both ahead of and behind the shock

to be the Euler equations (neglecting the boundary layer on the wedge in the first order of

approximation) along with the ideal gas law. The no mass flux condition is imposed on the

2



wedge surface, so that the normal component of the flow must have the same velocity as

the velocity of the wedge normal to its surface. Furthermore, it is required that the shock

remains attached to the apex of the wedge. The analysis is accomplished by linearizing

the Euler equations about the base state and applying the Rankine-Hugoniot conditions

at the mean position of the shock wave.

Carrier (1949a) and Van Dyke (1953) first investigated the response of the inviscid flow

field to time-periodic oscillations of the wedge. Their interest was in the surface pressure

distribution and the resultant forces and moments, and their relevance to oscillating airfoils.

The related problem of freestream turbulence amplification caused through interactions

with shock waves has been considered by Anyiwo and Bushnell (1982), Hussaini, Collier

and Bushnell(1986), Meadows, Kumar,and Hussaini (1991), and Kumar, Bushnell and

Hussaini (1989) who confirmed the important result found in Moore (1951), Ribner (1954)

and McKenzie and Westphal (1968) that a pure acoustic, vorticity,,or entropy wave, upon

interacting with a plane shock wave, generally generates all three classes of disturbance

downstream. The interaction of a shear wave with a detonation wave induced by a wedge

in a supersonic flow, as well as the response of the oblique detonation to oscillations of

the wedge was considered by Lasseigne and Hussaini (1992). In studying the interaction

of a shear wave with the detonation, they assumed that a weak steady sinusoidal vorticity

wave is obliquely convected through an overdriven detonation attached to a wedge. Their

concern was with the response, measured by the deviation of the detonation position from

its unperturbed state and by the vorticity and pressure at the detonation, as the degree

of overdrive is increased. They compared the flow in the presence of the wedge with the

unobstructed flow field considered in Jackson, Kapila, & Hussaini (1990). In particular,

for this special type of disturbance (i.e. steady), they found an infinite discrete spectrum

of disturbances to exist behind the shock.

The present study also raises other important, broader issues, notably the stability of

the shock on the wedge. It is generally accepted that the so-called "strong shock" solution

(Liepmann and Roshko 1957) is unstable (see Levinson 1945, Carrier 1949b, Henderson

and Atkinson 1976, Rusanov and Sharakshanae 1980, and Salas and Morgan 1982), whilst

the proof for the stability of the "weak shock" solution has largely been either numerical
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(Rusanov and Sharakshanae 1980, and Salas and Morgan 1982) or subject to soIme restric-

tions. The work of Henderson and Atkinson (1976) considered just finite length wedges to

"-avoid unbounded velocity downstream" (sic) whilst Carrier (1949b) did "not worry about

convergence in the large" (sic) when considering series solutions. One of the aims of this

paper is to place the evidence for the stability of flows in which the flow downstream of

the shock is supersonic on a much firmer footing. Here we shall remove Henderson and

Atkinsons's (1970) restriction and pay particular attention to the convergence of series

solutions.

The layout of the paper is as follows. In Section 2 we consider the three distinct classes

of disturbances upstream of the shock, and then in Section 3, the analytic solution for the

downstream development of these disturbances in the region bounded by the shock and

the wedge surface is obtained. In Section 4, we examine various aspects of the analytical

solution. These raise important questions regarding the stability of the shock itself. We

show that the weak shock solution is stable to these imposed disturbances, provided that

the downstream flow is supersonic in nature, in line with previous (mostly numerical and

experimental) studies. We also examine the behaviour of the far-downstream flow which

suggests an important physical decomposition of the solution. The physical aspects of the

decomposition is examined in Section 5 and the responses to the various types of imposed

disturbances are quantified. Our conclusions are given in Section 6.

2. Formulation

Throughout we will denote quantities upstream of the shock by subscript 1 and down-

stream by subscript 2. We take the wedge surface to make an angle 0 with respect to the

on-coining flow, with (x*, y*) the coordinates parallel and perpendicular to the upstream

base flow (respectively) which has magnitude U*, Mach Number M1 , density p*, and tem-

perature Tl*. We assume that the ratio of specific heats I is constant. The velocity vector

is written as U( (u, v) with respect to (xr*, *") coordinates. The density field is written as

prp, pressure as p*R*T,p, where R* denotes the gas constant and the temperature field

as TrT.
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The Rankine-Hugoniot relations provides a link between conditions upstream and

conditions downstream of the shock, and in particular leads to the following classical

result in gas dynamics (e.g Liepmann and Roshko 1957),

tan( - 0) _ U2 _ P= _ (-1)M,2 sin20 +2 (2.1)

tan/3 ul P2 (- + 1)M2 sin2/3 (

where 09 is the angle between the shock and the wedge centerline, and ill and 1i2 are the

non-dimensional velocity components perpendicular to the shock.

It is well known (Liepmann and Roshko 1957) that for a given upstream Mach number

M, and 0 < O,,,ax(Mi) equation (2.1) admits two possible solutions for 13: the larger value

corresponding to the so called "strong shock" solution, which is characterized by subsonic

flow behind the shock in all cases and the smaller value corresponding to the so-called

weak solution which is characterized by the flow being generally supersonic behind the

shock, except for a small region of subsonic flow for 0 close to 0 = Omax. For 0 > Omax,

no attached-shock solutions to the problem exist. Attached shock solutions all have the

property of uniform downstream flow directed parallel to the wedge surface.

Small amplitude disturbances upstream of the shock may be classified into three dis-

tinct classes (see McKenzie and Westphal 1968, for example). Taking e to be the measure

of the amplitude, and hence a small parameter, we have:

(i) Acoustic waves: These are characterized by having a pressure perturbation and the

resultant perturbations in velocity, density and temperature; however, the waves carry

no change in entropy and have no vorticity. In this case the disturbance field upstream

of the shock is given by
p = 1 + e•. + O(e 2 ), (2.2)

UM (aI + w) + 0(e2), (2.3)

V = - aE + (e), (2.4)

p =1+ -- + 0(E 2 ), (2.5)

5y
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T(y - 1)E+ O(±2), (2.6)

where k is the normal mode exponential

S= exp{ziaix + ia 2yI + i.tl, (2.1)

and

a = -a+ ± / + (2.8)

is the frequency of the disturbance for the given wavenumbers. The coordinates x,

and YI are parallel and perpendicular to the upstream flow respectively, suitably non-

dimensionalized (this can be accomplished by using one of the wavelengths of the

disturbance as a characteristic length scale, e.g. setting a,, say, to unity). The choice

of frequency w and also the nature of the solution (2.2)-(2.6) arises from solving the

irrotational flow problem upstream of the shock. We shall refer to modes correspond-

ing to the negative sign in (2.8) as so-called "fast modes", and to the positive sign in

(2.8) as the so-called "slow modes".

(ii) Vorticity waves: These are characterized by having no density, temperature or pressure

components to the disturbance to 0(e). As such, the upstream field can be written

u= 1 + ft + O(E2 ), (2.9)

v = C + 0(C2 ), (2.10)
a2

p, T, p = 1 + 0(-2 ), (2.11)

together with

w = -a], (2.12)

with E having the same definition as in (2.7).

(iii) Entropy waves: These are characterized by having no pressure or velocity components

to the disturbance to 0(e). As such, the upstream field can be written

p = 1 + ek + 0(6 2 ), (2.13)
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T = 1 - e+ (e), (2.14)

u, p = 1 + 0(e2 ), (2.15)

v = 0(-!2 ), (2.16)

together with w defined as in (2.12) and E defined as in (2.7).

In the following section we go on to consider the interaction between these waves

and the shock attached to the wedge. Fortunately, in spite of their distinct features, the

analysis is fundamentally the same in all three cases, and wt shall see how just one of

these waves upstream of the shock generally produces a combination of all three modes

of disturbance downstream of the shock; however, unlike the situation where no wedge is

present, the downstream disturbance is not restricted to a single wavelength.

3. The Solution Downstream of the Shock

Downstream of the shock, the flow variables may be written

P = P2 + ep + O(e 2 ), (3.1)

P = P2 + EP + O(e 2 ), (3.2)

T = T 2 + eT + O(e2 ). (3.3)

The non-dimensional coordinates parallel and perpendicular to the wedge are taken as x2

and Y2 respectively whilst the velocity components in the x 2 and y2 direction are written

as U2 + eii + O(e 2 ) and Eci + O(f 2 ) respecti% 21y. The governing equations at O(e) may be

written

Pt + U 2iXz2 + P2Uz 2 + P2vy2 = 0, (3.4)

P2{ f t + U2 "- 2}• + 1 PX2 =0, (3.5)
Y 12

P2{0t + U2 ix 2 } + VM12PY2 = 0, (3.6)

P2{T{ + U2TX± I - 15 + U 2P• 2 } = 0. (3.7)
-y



p= T + T213 (3.8)

The general solution procedure is based on that followed by Carrier (1949a) and

Van Dyke (1953). It is found convenient to first split the solution into two comnponents,

corresp)onding to acoustic waves and vorticity waves. Specifically, we write

0 = +X2 + Ey2, (3.9)

= 2 - E£2, (3.10)

where 0 == (x 2 ,Y2,t) represents the acoustic ,node and E = E(x 2 , Y2, t) represents the

vorticity mode.

Substituting these forms into (3.5)-(3.6), differentiating and combining appropriately

yields the following equations

V2 {ft + U2€ + }=0, (3.11)
I~M P2

V 2 {Et+U 2Ex,} =0. (3.12)

Solving (3.11) and (3.12) implies the introduction of two arbitrary harmonic functions (see

the footnote in Hui 1969). Equations (3.11) and (3.12) taken together represent a sixth

order system which is derived from the second order system (3.5)-(3.6), and therefore

without loss of generality, we set these two arbitrary harmonic functios to zero and note

that all physical conditions at the shock and the wedge boundary are satisfied by the

resulting solution. Using (3.4), (3.7) and (3.8), it is then possible to show that 6 satisfies

the following equation

1-{'ktt + 2U 2 1 21 + (r 2  (3.13)
a,

with

aP2p5 ±-• ¢ U2O5), (3.14)

where

a, 8 = 1 (3.15)

8 u u m m m u m nn nn umu H n A H m m u u n nn u u nn uu



is the nondimensional sound speed behind the shock. A furthei quantity is also required

to describe the prui-,,,,n fully, namely ",'(y2, t), the displacement of the shock wave.

It is possible to write the general solution for 0 and E which is bounded at the tip of

the wedge as

iuai - lwto-

= " :{al, cosh(v0 2 ) + b, sinh(v0 2 )} J,(kr), (3.16)
L'0

• .i~,2 i•IW9 "2 00.

E e 2-)- E c, J.(kýY2), (3.17)
VO0

sw-*U2 AY2 (00• U2- •2

4'= e 2- Z dJ.(kýy2 ), (3.18)
-ai~

where
k (3.19)

'2

/ 2 = a, (3.20)
a2.

- (3.21)
a,

FA A 2- (3.22)

2 - Y (3.23)

tanh0 2 = #, (3.24)
X2

A = cot(fl - 8). (3.25)

In deriving (3.16)-(3.18), we have assumed that the harmonic time dependency upstream

of the shock is transmitted unchanged through the shock, an assumption that is likely to be

accurate provided that JEj << 1 and the wavelength of the disturbance is large compared

to the shock thickness. The boundedness argument at the wedge tip (r = 0) precludes the

Y,,(z) family of solutions.

If we impose the impermeability condition on the wedge surface, then the b, coeffl-

cients must all be set to zero; if we demand that the shock remains attached to the wedge
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tip then d0 = 0. and if we assune that there is no transient behaviour (i. c. only the

sustained response to the imposed disturbanlce is present) then a0 = c0 = 0 also.

The key useful results are

""k 21a, + a, {a,-, a,+ } cosh(v092 )J,(kr), (3.26)
v=O 

a8

__-2 iw.
2 

Aa2 00a

, . t 7--2 - a 1 -' 1
22  i~1 ~A-c' + -ýCv+i - C- J'(k-ýY2 )E L 2  2

1x 0 (3.27)

-C 2 L- ;2iav + aL,-1 - a,,+ cosh(V02 )J1(',kr),
- V= O as

2 aOKJ

- ~ z - - (112 -.
2 

) ik a8
C 2 12 2 I: U cVJ.(kýY2)

-0 (3.28)

+ -e _2 k[3 f k{a._ 1 +a+ I}sinh(V0 2 )Jv(kr),2
V=O

where a-, C-1 = d = 0. The set of solutions above now involves three sets of coeffi-

cients, namely {a,,},{c}, and {d,}. Although these solutions satisfy the impermeability

constraint on 02 = 0, we have yet to impose the unsteady Rankine-Hugoniot conditions

(McKenzie and Westphal. 1968) on these perturbation terms at the shock, which serve to

determine the aforementioned set of coefficients.

The Rankine-Hugoniot conditions on the shock may be written in the following form

P2 + i-- = (1 - )R' + -(if 1 3 1 + ul), (3.29)
P2 P2 P2

1 2 +a, P2 Pi1
lt2 + -U2- = U1 ± + uipi +± 2 (.02 P2 2-r"2 P2 2-yM /5 (3.30)

__+ __2 P 2 a2aS P2, + P2 G1-- )R' +
12- - - +h(- 1)U2 P2 (h - 1)i 2 P2  112 U2  (3.31)

-- I 
Pi

1).1121 (1, - 1)MA2 '

+ -('11 u 12 )-2 ', (3.32)

Here we have written

R+= P1 ,!', + (3.33)
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where a denotes distance along the (unperturbed) shock. We have taken (u', v') to be the

velocity perturbations perpendicular and parallel to the shock, respectively, and (6,' b) the

basic flow perpendicular and parallel to the shock respectively.

The four conditions (3.29)-(3.33) may be combined to eliminate the downstream per-

turbation density p'. It is then possible to insert the expressions for f,, 0i, ,', all evaluated

on the undisturbed shock surface, into these resulting equations to yield the following sys-

teni of equations at each value of v > 0.

(a 8  1^ 1^
cos(O -0) [-iAa-9c++ cv+i -Icv-1

-. U2 2}
*1 U2

2 [2zaav - av I + a .- I cosh(v~o)}
1" •2 a,

+ sin(O - 0) ![a,,-p + av+±] sinh(V90 ) + 2
12 U2iU• 1 ^ 1 ()

-(iUl -- 2 )[- iU2Adu[d + 1-(d Rl)]} 1

a, 2r a 1{A, sin(/3 -9) [-I,\ZA--C 1 + 1 C~ CL,...l
BA U2 U 2

-- 1 [2i- .V av-- avl + avlI]cosh(v~o)
2 a,,

- cos(P -9) 1f3[a.-, + a,+,] sinh(v•o) + 0 2 a, I
+A 2  2 U U2  2 (3.35a, b)+ 2 sin(O - 0) {vi[-iA U2dL + 2•(asv+j dv-1)] + I 2asdv

IB2 Ia,, 2 +iiasv

+ 3 2 + U2 -Uav+ U 1 1cosh(vOo)}+ A3 }{ 2iavL + -- av- 1 -+ B3 2a. a,R- ( 2!')
Here we have written

tanh 00= tan(O - 0), (3.36)

A , -- 1 , (3 .3 7 )

A2 = 1 (1 - 1 ), (3.38)

4A3- a, (3.39)
262'
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a2B, =1 + ( _1d'(3.40)

B2 -- (f- (3.41)

B 3  l= , (3.42)

The -ieterniiniation of R("),Rv, and R,) is routine once the upstream disturbance is

prescribed, but for brevity these are omitted. These quantities arise from the forcing caused

by the upstream disturbance which is proportional to the exponential (2.7) evaluated at

the shock position. This exponential is expanded in terms of the Bessel function by usiAg

exp[i(aj cot /3 + a 2 )(cos 0 + A sin O)y2] = e E I 2 iSil e in

U2w, \ +( 1)0e0•v + (3.43)
- U _2 e ±e 2-as E1 + jv,,,o

V=O

where

(=sin_ al cot/3 + a 2 )(cos0 + Asin0) + _(sin- I= -aU (3.44)

and 65,,0 is the Kronecker delta function. Then a,+,, b,+l, and c,+, are determined from

equations (3.34), (3.35) which are essentially recursive in form.

4. Analysis of the Series Solution and Far-Downstream Behaviour

In Figure la, we show R{Ie- } (solid line) and ýý{pe- I} (broken line) both evalu-

atedl along the wedge surface for the particular case M1 = 5, 9 = 25', a l = 1, and a 2 = 0,

taking the positive sign in (2.8) (the so called "slow mode"). The corresponding shock po-

sition 1{ R l,'c } (solid line) and a{l,'c-i } (broken line) with distance along the shock,

r2 = !12(I + A 2 )1/ 2 is shown in Figure lb. These results indicate a coml)lex structure to

the solution: both quantities show the exl)ected oscillatory behaviour, although the wedge-

surface pressure shows indications of amp)litude decay as r2 --+ c. Shown in Figure 2 is the

respoinse to the so-called '-fast mode", i.c. the negative sign in equation (2.8) is used. The

wedge-surface pressure is shown in Figure 2a whilst the shock position is shown in Figure

21); as before, real components are indicated by solid lines and iiiuaginary compl)nents by

12



broken '.'ines. The expected oscillatory behaviour is shown, but in this case there is little

evidenceof amplitude modulation of the wedge-surface pressure. These two exaiiiplt inldi-

cate the importance of ascertaining the correct downstream behaviour of the solution given

by the infinite sums (3.26-3.28). Unfortunately, it was found that as r.2 (or x2") became

large, the computations for z,,' (and P) become extremely sensitive to the number of term,,

of the series taken (although we stress that all results presented are carefully checked for

accuracy, in particular for insensitivity to truncation of the number of terms in the Bessel

series (3.16)-(3.18)). Cursory inspection of the coefficients a,, b,, and dL, indicated that

the numerical difficulties described result from these coeffiients often becoming extremely

large as v -* oc. leading to numerical difficulties associated with the effects of roundoff.

The same general tjcink of oscillatory, complex behaviour seen in Figures 1 and 2 was

also seen in the results of Lasseigne and Hussaini (1992) relating to detonation waves and

moving wedges. However, there are two, not unrelated, issues that remain unanswered and

affect the physical interpretation of the results. These two issues are: (i) the nature of the

coefficients a,, c, and d, as v -- oc and (ii) the precise nature of the flow far downstream

of the shock. We look at these aspects in some detail and discover a number of interesting

subtleties.

Superficial inspection of the coefficients indicates general growth as V --+ cc. Indeed,

this was observed even when the inhomogeneous forcing terms R. , RV,, and RV,, were

"turned off" after v = 1, in order to mimic a homogeneous system (although in this case

it was found that d, - 0 as v -- oc). We now therefore consider the homogeneous system

for (3.34), (3.35 a,b) in the limit as v -* o. This leads to a system of difference equations.

and we therefore surmise that the coefficients take on the following form as 1' --4 0c

cV, Col"K, (4.1)

d., . D oKv, (4.2)

whilst because of the nature of the occurrence of the av, we must have

a,, -- AoKv•-voO°, 14.3)

where K is an eigenvalue whose precise value is extremely important since it is this value

that would be expected to determine the ultimate downstream behaviour of the disturbance
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field. If JKJ > 1, then using the generating function for Bessel functions yields the following

result

c,,J,,(z) , > CoK'J,,(z) -_ Co -c czI + o. (4.4)

This then predicts exponential growth as [zi -- cc if R{z(K - l/K)} > 0. Therefore, we

1)roceed to the actual determination of K.

Substituting (4.1)-(4.3) into (3.34), (3.35a,b), and discarding inhomogeneous terms,

leads to the following three equations to determine K:

cos(f3- 0) 1 + 21

1 U2  2 2
412i - e-ooK + e8OK-1]Ao

4 [Za, e80 7K 1Ao}(.5

+ sin(13 - 9) { l/[e-oK +eGOhK-]Ao

+i32 aCo - (I - i!2)[- iU2A+ 1 -K - }'IDO 0,
ZUT2  a, 2 2J

A, a.

sAn(1 - 9) [-1A + /K - !_ -'] Co
B, U2  2 2

- -[2i 1  - + K-leGo]Ao
4 a,

-cs/ -)14Ke9 ~eoAj U2  JJ(4.6a, b)

+ {A2B sin(/ - 0) {V [- iU2_A+ 1(K - K-1)] + i2asIDo}

A3 U2 0 U2K&80A}
B3 4 a, a,

=0.

This system may conveniently be expressed in the form of a sixth-order linear gener-

alized eigenvalue problem by writing

Ao = KA o ,

173 KC 0 , (4.7)

bo =KDo,
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and solving for the eigenvector {A0 , Ao, C's, Co, Do, D0 }. This was accomplished numeri-

cally and yielded the following general trends: (i) Of the six roots for K of the eigenvalue

problem, four were imaginary, and the remaining two were complex twins K K0 and

K = -c.c.{Ko } (indeed, the nature of these roots can be confirmed by inspection of the

system (4.5), (4.6a,b); (ii) the imaginary roots all had 0 < NIK < 1: (iii) the complex pair of

roots had NIK > 1. This last point strongly suggests the flow is structurally unstable since

there exists homogeneous solutions for o and E which grow expIonentially as the distance

from the wedge tip increases; however, further detailed analysis given later shows this to

be untrue.

Returning now to consider the nature of the imaginary roots, Figure 3 shows the

variation of these roots with wedge angle 0 at -111 = 1.3, 3, and 5. In addition to the

trends outlined above, the roots have the features that K --+ 0 as 0 --+ 0. whilst as 0 -, 611

I KI --+ 1, where 0... is the linit of the envelope of supersonic flow downstream of the shock.

This then, in some way connects with the results of previous research on the stability of

the strong shock solution. We now consider the nature of the complex roots. Fortunately,

it is possible to obtain precise analytic information on these roots aided by the observation

that tile eigenvectors from the computation reveal that Do =/0 = 0 (to within machine

precision). If we use this result, then the groupings shown in (4.5), (4.6) would suggest that

an eigensolution is possible if the following three equations are simultaneously satisfied:

•a 8  1^ 1 112U 2

[-ZAa--, + 1'iK - 1CKi-']Co - [2z- - -e-°°K + e°°K-1]Ao 0, (4.8)
U~2  2~ 2 4 a,

I o[A-°K + ceOK-']Ao + i/z-i- Co = 0, (4.9)
4 U2

2i- v e- oK + U2 e0K 1 = 0. (4.10)
a, a,

We find this is indeed possible and the solution is

K= I [U2 -a] -1 /}/ (4.11)

Co = ±iAo/2. (4.12)
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The value of K, given by (4.11) has IK! = t90 > 1, suggesting that the flow is always struc-

turally unstable in the sense that (listurbances will always grow downstream. However,

it turns out that in fact this homogeneous solution represents a structurally stable flow.

This stability is demonstrated by defining the following functions which arise naturally as

a result of the analysis above

wz 2 j I2 \a 2  00~12 1oe2W° a• ,w2) E K
E Co 2 K AJI(kY 2 ), (4.13)

Vi=-00

together with
112-- 2  2 - 0A wt u2 a2  E {Ke6 Go- (kr); (4.14)

V=00

E and ¢ are both harmonic and related through the Cauchy-Riemann equations, with

¢22 = -E 12 .Y2 =/k. (4.15)

As a direct consequence of (4.15), the exponential growth of the two components to this

homogeneous solution cancel each other when computing physical quantities such as the

pressure P or the velocity (ii, b), and therefore, the flow calculated from the summations

(3.26)-(3.28) is bounded for all values of (x 2 , y2).

Although, the growing homogeneous solution for the coefficients does not lead to a

physically unbounded solution, due to exact cancellations when calculating physical quain-

tities, their presence greatly complicates the computation of the summations (3.26)-(3.28)

for calculating the flows since the relevant physical quantities result from the remainder of

summing three or more, numerically very large quantities, to yield a much smaller quantity.

The numerical difficulties in obtaining accurate solutions associated with this approach are

obvious. WXe note (again) that all results presented have been carefully checked, to account

for this plhenomenon.

The final question that arises is the nature of the downstream response to sustained

acoustic waves, entropy waves, or vorticity waves. WVe may expect that the solution down-

stream will remain oscillatory, with no amplitude decay,. although this is not always the

case. The different downstream behaviours of the acoustic disturbances can be umderstood

by firstly examining the solution in the absence of the wedge (see McKenzie &,- Westplhal
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1968). Since the frequency of the disturbance downstream of the shock is fixed by the fre-

quency of the disturbance upstream of the shock and the wavenumber of the disturbance

tangential to the shock is also fixed by the deflection of the shock produced by the upstreamn

disturbance, there is a finite range of wavenumbers tangential to the shock that exclude the

existence of plane acoustic waves which propagate downstream. If the imposed tangential

wavenumber lies within this range, then the acoustic disturbance behind the shock (in the

absence of the wedge) exhibits exponential decay in a direction normal to the shock. If the

tangential wavenumber lies outside of this range, then a plane wave propagates at an angle

OP to the shock. This angle and the range of excluded tangential wavenumbers depend

upon the relative orientation of the shock and the upstream base-flow and disturbance

conditions.

The presence of the wedge changes the nature of these solutions drastically. In the

case of the tangential wavenumber being within the excluded range, an acoustic field is

generated that decays algebraically (rather than exponentially) owing to the requirement

that the shock remain attached to the apex and the requirement that disturbances have

zero normal velocity at the wedge surface. If the tangential wavenumber is outside of

the excluded range, then the solution in the presence of the wedge exhibits two types of

behaviour, dependent upon the angle of propagation of an acoustic disturbance in the

absence of the wedge. If the angle of propagation Op is greater than the angle between the

shock and the wedge Q - 0, then the pressure disturbances generated at the shock would

intersect with and reflect from the wedge surface. Thus, there would be a non-decaying

pressure field everywhere between the shock and the wedge surface with a superimposed

algebraically decaying pressure field owing to the requirement of an attached shock and

zero velocity normal to the wedge surface. If the angle of propagation Op is less than the

angle between the shock and the wedge surface, then the pressure field is divided into two

regions by a ray emanating from the apex and parallel to the direction of propagation

of the pressure disturbance in the absence of the wedge. Between the shock and this ray

there is a non-decaying pressure field, with the aforementioned superimposed non-decaying

component. Between the ray and the wedge surface the pressure field is algebraically

decaying and there is a component with sustained oscillations. This is in contrast to the
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solution in the absence of the wedge aind is exl)haind by the l)reseict' of the wldge that

serves to terinjijate the shock (which is assulnedt of infinite extent in both directions in the

absence of the wedge), and there are no pressure (listurblances generated by the shock to

fill this region. We will refer to this region as the shadow region.

The above mentioned downstream limits calt be mathematically understood by again

considering the behaviour of the coefficients a,, c,, and d, as v -, oc when the inho-

mogeneous terms R(V1), R(V'),andl R(,:P are included. For this, the nature of 9 in (3.44) is

important. If 9 is real, then the wavenumlber of the imposed (listurbances lies within the

excluded range derived from the theory of McKenzie and Westphal (1968), the coefficients

within the sununation (3.43) neither grow nor decay, and the combination of coefficients

within the bracket in equation (3.26) all decay at a rate proportional to c-0. Thus when

reconstructing the pressure along any ray 02 = constant, algebraic decay is found since

02 must lie on the interval (0,00) with zero corresponding to the wedge surface and 00

corresponding to the shock. For 02 = 00 the bracketed combination of coefficients does

not decay leading to the appropriate oscillatory behaviour necessary to match conditions

at the shock. If 9 is complex, then the condition

(aI cot Vý3 + a 2 )(COS 0 + A sin 0) + .

> 1, (4.17)

is satisfied. We also note that for equation (3.43) to be satisfied then sin 9 must remain

real, which requires that

0 = ±7r/2 - i, (4.18)

where

Ou =cosh' {±(±}2 (4.19)

Notice 9i is related to the angle between the direction of the shock and the direction of the

acoustic disturbance OP through tanh 6i = Q tan OP. For imaginary values of 9 the coeffi-

cients of (3.43) behave as (±ie9 ' )", as v --* o, which increase exponentially in magnitude

as do the corresponding coefficients R••), R, , and RV . If 9, is greater than 00, then the

generated or transmitted acoustic waves intersect the wedge surface. The physical conse-

quence of this intersection is seen by considering the bracketed combination of coefficients
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in (3.26) along with the factor cosh(192). The product grows exponentially and alternates

between real and imaginary. The relation (4.4) shows that there is a sustained oscillatory

solution of the pressure for all x2 and y2. For 0 < 9, < 00, the aforementioned product

of coefficients is exponentially growing when 02 > 0, which shows that there is a region of

sustained oscillatory behaviour of the pressure field near the shock, and the aforementioned

product of coefficients is exponentially decaying for 02 < 0i which shows that there is a

region of algebraic decay of the pressure field near the wedge surface and that there are

no sustained oscillations near the surface. This overall behaviour of the pressure field has

been verified by direct computation of the summation (3.26) along rays 02 = COIIftait for

various cases.

With the previous analysis in mind and restating that one goal of this analysis is to

discover how these solutions might affect the boundary layer receptivity problem, we focus

attention on the pressure evaluated along the wedge which generally may naturally be

decomposed into four parts

- = e +ikcosh(Oi-o)xX2
e wtPPoe L

"± PIX1/2e - ) 2-a,4 (4.20)

+ 1~y/2 - 1-2 -- im)
e -U(+ao4 + Q(x2).

The first term on the right-hand-side is non-zero only when 9i > 00 and is evaluated

numerically by considering the large v behaviour the coefficients {av}. This term is con-

verted to an infinite sum of Bessel functions and then subtracted from the left-hand-side

where the pressure has the representation given by the summation (3.26). The Fourier

Sine Transform of the resulting difference is evaluated and the strengths of the inverse

square root singularities provide the amplitudes P1 and P 2 for the second and third terms.

Physically, the first term represents the transmitted acoustic wave (or generated acoustic

wave if the imposed disturbance is an entropy or a vorticity wave) when it intersects the

wedge surface, and the second and third term are the far-downstream lbehaviour of slow

and fast moving acoustic waves associated with reflections off the wedge surface and regen-

eration of new acoustic waves at the shock, as well as new acoustic waves generate(l 1) thTe

requirement that the shock remains attached to the wedge tip. The first three terms art,
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the leadling ternis in the lIimiit X2 - DC, tand the fourth terin (iecav,ý faster than -. I/- anid

is (c0nsidlered to be the local field. The Fourier Spectrum of the fourth tellin is impilortant

since it represents the generation of all wvavelengths by the response of the attached shock

to a single wavelength input; the specwtrumI1 of the local field is b)oundled for all wavenunillbers

since the local field dlecays relatively quickly as xr2 -+ OC.

If 9i < 00 then the far-downstream lbehaviour of the pressure along the surface changes.

The wavenumlber of the iUnposedl disturb~ance is outsidle of the allowable wavenumbers for

propagating p~lane waves or the generated or transmit ted lplaie- wave pressure (list urb~ance

(toes not intersect the wedlge, andl it is found that PO is zero. The amp~litudles P1 andl P-2

are nion-zero and therefore the pressure has algebraic decay far dlownstreamn.

The vorticity, found by comp~uting Q =V'E, can b~e similarly d.ecomp~osedl into) four

p~arts if 9i > 0
- w a 2 \Y2

iwt+ '112 Q 9 2 u-~ fckoh~

"+Q2 Y2 ' 1/ ± kY+iý q(Y2),

where we have assulmedl that the calculations take p~lace far enough downstream in r2 such

that the behaviour represented by (4.21) is an accurate exp~ansion valid for large Y2. The

first termn rep~resents a genieratedl or transmitted vorticity wave ando the next two ternis

represent additional vorticity generatedl by the moving shock as a result of requiring that

the shock remain attached to the wedge apex and zero niormal velocity on the surface. That

is, the algeb~raically (decaying comp~onent of the pressure field generated by the presence of

the wedlge interacts with the shock wave through the Rankine-Hugoniot relations which

indicate that the shock imust be (distortedi by this comp~onent ( f the pressure field. andl

hence algebraically dlecayinig vorticity niodes rep~resentedl byV •Q andl Q., Fre generated

by the curvature of the shock. A numerical subtlety exists whenl trying to calculate the

dlecompilosition (4.21) when 9, > 0. The coefficient of the vorticity d1epends on cancellations"

involving five very large termis (for the pressure dlecomiposition there were only three very

large ternlis): thuns. it is not possib~le to accurately (determinile Qo for sonmc case~s. if 0, =0.

then it appears to lbe nmot possible to calculate a dlecomplosition of thme vorticitv into the formn
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given in (4.21). The coefficients of thi vorticity expansion neither growi nor decay making

the numerical determination of Q0 difficult if not impossible. In the absence of the wedge,

a single wavelength vorticity mode would still exist for this case, and the pressure field

would be exponentially decaying. With the wedge present, there exists a small algebraic

component of the press.are field.

The results relating to the decompositions given in (4.20) and (4.21) are given in the

next section.

5. Results

The response of the flow downstream of the shock is generally complicated, although

the analysis of the previous section does enable us to quantify the response, at least in

the far downstream limit. To this end, we find it useful to consider the sine-transform of

Q(X 2), that is

*= Q(x2 ) sin(px2 ) dx2. (5.1)

Fortunately, this quadrature can be carried out semi-analytically using the following sine-

transform

1 {j k2-(yI+q)2-i(it+q)}

0  sin(/ix 2 )e ?J.(kx2 )dx 2 = 2ikv Vl12 - (y + q) 2  (5.2)

1 {� k2-(y-q)2-i(,I-q)}

2ikv Vk2 - ( -q)2

The inverse square-root singularities lead to the second and third terms of (4.20) and

the evaluation of (5.1) involves a summation of terms derived from (5.2) with coefficients

determined numerically. The results of this process are shown graphically in Figures 4-8

where 3{Q*} is denoted by solid lines, whilst ý{Q*} is denoted by broken lines.

The spectrum Q* for the input conditions M 1 = 5, al = 1, a2 = 0 and 9 = 25'

(slow mode) is shown in Figure 4. For this set of input conditions, inequality (4.17) is not

satisfied and therefore PO in (4.20) is zero. This spectrum is bounded for all waveiijnimbers
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bui t has sqiart-c root be)hlavioltir at th ± wia Wtvt'1 11iiini. t i catlol 4111 Hit, >At~ tw lit

fast at'oiist ic di tuli lce, behindiii thle shiock. This >t-iat t bet h)lavh 1 ii rCII~llall NHitil

51 ii t tact jug tlit I"IN'(1'11 SWUP-~lt'l0t sHing 1 arti to formt the stt'oivitid aitll( tiiTi tlIII, of i 4.20

For %vave imlinhers betweenl t lices two p 'iit s, a. phtiit wave' withI the fixt'tl t im'it frtqueilicy

NV( tlti have to travel faster thanl the sounld speet 1 relative to thle mleanl fit w. antd Io t list

represtlit prcssure (list urlbalices that (lecat e xpoiieiit ially iii *12. The local helt I-is comiijriscd

of a Fourier integral o~ver both ci(lasses o~f dist urbanice. It should bc nlot e( that tXe large

wavenumi )1er (listlirlbalces arc -slow modes" whilst thle smiall wavenunildwer dis-t 1ill'alices art,

"~fast modes". The illiportancie of Q* is that it deiiioiast rates tlut far dlewiistreamni tlit( eiit'rgY

density of the acoustic ,ponlse is spread over all wavt'limi~nlers, and is hlot ()I cli'et rattt I

ait an isolated wavelmilinler as is the enlergy dtiisity of the acoustic nitldt' ill the absience of

the wedgec. In particular, the eniergy (lenisity is sigxiifitarit at large wavenitinlers. Z*.-,i sinall

wavelt'iigtlisý, and these disturbances generated by the shiock-botly iiitera .oii miighit lead

to rt'ct'lti-vitv a~s they interact with a -rowi ng boundary layter oil thie wedge ;1irfac-'.

Figutre 3 shows the spectruiu for the fast ntiode wvith the salit' inipult condition." as, ill

Figure 4. For the fast iiiodct. inequaliti (4.17) is, satisfied so that PO 'IS nIoI-Zero,. To limioica~tC

lthe prest'nct' of this t ranlsnilitted plane wave, a. circle has beeni added to Figure 3 at thle

watvenuliil111er location of the transmitted wave. It should b~e iiotedl that thlis wavt'( iiIunnher

lotatioii is iiot (juhite at thec samie wavenumiber as the singularity of the Fourier traiisforni

whitcl leads to the S'cond~ anil third termis of the expanlsioni. Figure 4 and Figure 3 appear

to be quantitatively shimilar, although a shift to smaller waveniunibers is forced by the

changed frequency of the imphosedl di~sturbance, a result of choosing thit opposite sign inl

equation (2.8).

Ini Figure 6, the spectruml o~f a. fast mode with- larger incoming Mlach inumber is shown.

Thit inptit ('oliditio.is are . 11,=H 10 = 1, (12 =0 and~ 0 = 25'~ (slow lniode). This

set of iniput ('oniditionis also falls withiii the envelope of flows which lead~ to sustained

downs~treami acoustit' waves. It is seen that the energy density of the lotcal fie'ld has a

stronig M~achlinumber dependence. as (d0 the amplllitudles of the first three tt'rins of (4.20)

whitch will be exploredl in Figures 9-12. Figures 7 and 8 show the spectra for thet local

p~ressuire field Q*, inl respoiise to an1 inc(ominllg entropy (listiirb, iice (2.13-2.16) and to ani



ilit'( iiiiiig vtnrt itity dV (us lial)tX , (.2.9-2. 12 ). The 1iij)tlt co)iolitIoiis art. the >a 'le :t> ii ýI i~r,

4 ( except for Figure 8 for1 which wet have take' (1 anl (k2 = I. There i'. a qualit at i%-\

1ci'tsioise to t hetse lioli-act )ist ic inu lt s. Thit spet'ttra ini Figures 7 am!i 8lt are coiobhit l''ino)t110

peakedl near thle fast -iiodle siingularity with lthle I'esl)Onist nearfl thle 51 ,!ii'(It gulatity not

iiearlv as stnrung. For the re: 1)OA5e to NO toti ie fast andt slow uincniiit g acmi;t ic m iod(, It'sli

specttra nital bo0th singitlarit ies Were broad w~ithI the st rengthI of thle slow- ii1mal singljuarity as

stnmg or stronger t han the fast -mnode siiigula~'itv. Perhaps this is aI result of the iiic( ulihig_)

eiitro)vy disturbance having Zero preslirt' and~ vt'okwityv(eiilpoiehits. the ihicoliihg \'orticity

wavetavn zero( p~ressure an eniy ioponients, wh~i.' all coniponient s of thit iiiconiniii

at'ollstic (IistuI')aimces arte io-Zero, thuis leadling to at miici iiiore c'omlicai'itedt inlteatit(ton

wvith tlit at tac'hied shitotk (especially hit'ar thie tip of the wt'dgte).

Thet amplitude tof thit traisiiiit ted ttir genitratted ( sust ailed ) acousti d isturhl ait'e P

lt'e amiplitud1(e of the algeb rait'ally tl,ýcayiug slow iiitdt' P1 , and lt'e aniplitud hlit)f t lit alge-

b raitcally decaying fast mode P-2 are shown graphliically in Figures 9-12. It ca;n bew slhownl

that PO, and P2 aereal qulantities whilst Pi is strictly iniagiay ft sdltdisi

sdit linet, .i {P1  is tltiioted as a line with sniall dashes ali( RP 2 } is (elehited as a line

with large dlashes.

Figure 9a shows the response for the an impinging slow at'tinstic mnode. Over aI largt'

range tof Macli ummnbes of the imnt'oiiig flow All, there exists no( dotwnistreami susta~iit'd

acoustit' waves, i.ec Po 0;O however, 1)011 of the algebraitcailly WtaY-iiig initdes art' mn-nzt').

anid the arnl)itud. s intcrease conisiderablyl as the Macli number incr'eastes. A., melitioniedt iii

the initroducttioni this is signifcaiit since in the alhselice of the wt'dge thit theory (as verifit'd

1y v nuiierical t'tnilput atiois) )i-edit'ts that the acoustic retsponiste wvill 1be t'x 1 )oiet'itially' det

cay ing. butit byA requirinig t hat the shiotk remIains at tachted to thet 't'dgt' tip. it is st't'n that

thit rt'spotnse decays like thlit inverse, square rowtt (together withi a ltttal fie'ld which also dt'

imt t dt'tav exponent iallvy). Figuirt' 91) shows, thlit dt'tails of t lit t ranist a u rt'tion Aii Macl

niuxil a'r ) 1betwteten lt'e deravixig pressurte responst' and thit siist ; ,incd 1)'tssui ct rt'spohist. Th,

ailijplittildes, of P1 and P2 jumip draunlatical' Wht'n P, is linZr.Phys"ically, this iliiiplit's

tha t the'rt' art' twt) parts tothe lit'I agt'lra icallv dt''aing mtodt's. The first part is a my'si ut
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the requirement that the shock remain attached as seen when Po = 0: the second part is

a direct r.sult of the sustained acoustic disturbance reflecting off the wedge surface and

interacting with the shock to generate mnore acoustic disturbances. As .l1 , decreases, the

critical wedge angle (above which there is no mean flow solution) decreases until it reaches

the fixed wedge angle of Figures 9-12 (i.e. 0 = 25°). The amplitude of the transmitted

wave remains finite in this limit; however P, and P 2 increase sharply in magnitude, this im-

plies that the solution is becoming increasingly unstable as the critical angle is approached

(as world be expected). In Figures 10-12, the response to an incoming fast acoustic wave,

to an incoming entropy wave and to an incoming vorticity wave, respectively, are shown;

in all cases 0 = 250, MI 5, a 1 1. and a 2 = 0 except in the case of the vorticity mode

(Figure 12) where a2 = 1 and a', 0. There is a sustained acoustic disturbance for these

three cases. and correspondingly, the amplitudes of P1 and P 2 are relatively large since as

mentioned in the discussion of Figure 9 these two modes have components related to the

reflection of the acoustic waves from the wedge surface. All three figures demonstrate the

same behaviour as Figure 9 when the critical angle is approached - the amplitude of the

sustained mode remains finite whilst the other modes grow. For the responses to the im-

pinging acoustic disturbance (Figure 10) and to the impinging entropy disturbance (Figure

11), the algebraically decaying fast-mode is considerably larger than the slow-mode with

the relative importance of the slow-mode being greater for the response to the entropy

wave. Comparing the spectra shown in Figures 5 and Figure 7, the energy of the ,,ow

mode is seen to be in the local fields with relatively more en•ergy for the slow-mode in the

response to the impinging acoustic wave. In the response to the incoming vorticity distur-

bance (Figure 12), the amplitude of the slow mode P1 is much larger than the amplitude

of the fast-mode P2 . Comparing with Figure 8, this is consistent with the relative absence

of energy in the slow-mode of the local field.

For completeness, Figure 13 and Figure 14 show the result of a decomposition of the

vorticity into the form given by (4.21). Figure 13 represents a response to an incoming

fast acoustic wave with the same conditions as Figure 10, but with a wedge angle of only

20'. The chaige, of wedge angle is due to the numerical difficulties of calculating Q0 al-

ready mentioned. Figure 14 shows the response to an incoming entropy wave. General

24



c()il1(liisio ii l" aoiit thet decoliiilosit lo1l iln dtlith-Illt to 0)1 t ill (a~g;ui11l r'h;t(' tol th lie iiuimiic;1l

dlithciiltit's): lio~'vever, wct (d0 note thle r('latlvt iiiseiisit ivi t to t \lttii Mach ii )t'1e of t lit (t )t'f

ticivent" e txcept hevar the crit ical angle whert' 0110' of t he ;l~gebrlc')rdidlVlecavNiiig co iilpoii 'ur

1 etconiies qunite large. Again. this probablly relates direct ly to thle s-t dlility of the euit ire(

soltit ion as the (nt ical aiigle is approaclhed.

6. Conclusions

NNe have considered the interaction between the shock wave attached to the wedlge aiid

freest ream dlisturbanlces. In order to quantify the results, t he freest reaiii (list uri ances were

t akeii to be fixed-frequency, single- wavelengt h, plane- wave dlist urbances of acoustic type,

the vorticity type, or entrolpy type. The behaviour of the flow field dlownistreami of the shock

inl the shock-wedge combination was conmpared with the behaviour of the dlownistreami flow

in the absence of the wedge. After rationalizing a number of mathematical and compuhta-

tional subtleties, we were able to show p~recisely how the presence of the wedge affects the

interaction between a shock and a free stream disturbance. We specifically focuised onl the

p~ressure' disturbance along the wedge surface as the analysis of these (Iistlibnl-ives directly

relates to boundary- layer receptivity iii the shock-wedge conifiguration andl we also studliedl

the vorticity generated by the presence of the wedge as this analysis relates to enhanced

mixing by the vorticity produiction of a moving shock.

The m-lost significant dlifferenlce.- in the interaction p~roduicedl by the presence of the

wedlge are the presence of an acoustic andI vorticity field which decays algebraically in

alddition to sustained oscillations p~rodluced by the incoming dhstuirlance. It has been

shown that this field is comprised of two parts: one p~rodlucedl by the requirement that the

shock remain attached to the apex of the wedge andl the other produced by refletctions of

acoustic waves from the. wedge suirface.
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P for case 1 (acoustic mode)
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Fig.la Wall pressure distribution for upstream slow acoustic mode, M 1I 5, 9 = 25', c = 1,
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'V2 for case 1(acoustic mode)
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P for case 2 (acoustic mode)
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Sfor case 2 (acoustic mode)
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Q* for case 1 (acoustic mode)
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Q* for cose 2 (acoustic mode)
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Q* for case 2 (acoustic mode)
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Q* for case Z (entropy wave)
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Q* for case 4 (vorticity wave)
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p for case 1 (acoustic mode)
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p for case 1 (acoustic mode)
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p for case 2 (acoustic mode)
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p for case 3 (entropy wave)
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p for case 4 (vorticity wave)
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vorticity coefficients for case 2 (acoustic wave),i3=20
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Fig.13 QO, Ql, Q2 for upstream fast acoustic mode, 0 = 20', al 1, ()2 = 0.
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vorticity coefficients for case 3 (entropy wave)
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